

Ozone and Aerosol Measurements with Airborne Lidar During the INTEX-NA Field Experiment: Initial Results

Edward V. Browell, Johnathan W. Hair, Carolyn F. Butler, Marta A. Fenn, Anthony Notari, Susan A. Kooi, and Syed Ismail

Sciences Directorate
NASA Langley Research Center
Hampton, Virginia

Airborne Ozone & Aerosol Lidar Measurements

Sample DIAL Ozone Comparisons

Pressure (hPa)

18 July 2004 (Flight #9) U.S. Outflow

DC-8 Flight Track

18 July 2004 (Flight #9) U.S. Outflow

18 July 2004 (Flight #9) U.S. Outflow

20 July 2004 (Flight #10) Alaskan Smoke Plumes

DC-8 Flight Track

20 July 2004 (Flight #10) Alaskan Smoke Plumes

1 July 2004 (Flight #3) Asian & CA Outflow

1 July 2004 (Flight #3) Asian & CA Outflow

INTEX-NA: 1 July - 14 August 2004 (18 Flights)

INTEX-NA: Average Latitudinal O₃ Distributions (80-60W)

INTEX-NA: Average Longitudinal O₃ Distributions (25-55N)

Preliminary Results

- Obtained large-scale distributions of O_3 and aerosol characteristics from near surface to mid-trop./lower strat. on all but one INTEX-NA flights.
- Observed long-range transport of Asian pollution with enhanced aerosols and O_3 in mid-upper trop. in the eastern Pacific to possibly eastern U.S.
- Observed variable tropopause levels and presence of stratospheric air mixed with polluted air masses from up wind convection.
- Observed enhanced aerosols and O_3 in lower troposphere associated with pollution over the U.S. and advection over Atlantic.
- Observed aerosol characteristics & long-range transport of Alaskan fire plumes to mid, eastern, and northeastern U.S. in layers which mixed into PBL in some cases and Saharan dust over southern U.S.
- Determined the average latitudinal & longitudinal O₃ distributions for examining the continental scale variations observed during INTEX.

All INTEX data images available at http://asd-www.larc.nasa.gov/lidar/

Future Activities

- Determine the average aerosol lat. & long. distributions to correlate with the average O₃ lat. & long. distributions.
- Complete air mass categorization based on O₃, aerosol characteristics, and potential vorticity levels, vis-à-vis, TRACE-P.
- Determine fraction of time each air mass type was observed and the relative contribution of each air mass type to trop. O_3 budget.
- Determine chemical characteristics of each air mass type based on in situ measurements of the remotely categorized air masses.
- Determine the eastward flux of O_3 observed over eastern North America and western Atlantic (80-60W).
- Compare O₃ and aerosol results with model predictions.
- Compare large-scale average O_3 and aerosol distributions, air mass types, and fluxes with previous field experiments.
- Collaborate with Science Team in chemistry/transport process studies and satellite & model validation activities.

See posters by Fenn et al. and Butler et al. for additional O₃ and aerosol results!